Chlamydia pneumoniae inclusion membrane protein Cpn0147 interacts with host protein CREB3

نویسندگان

  • Xia Zhao
  • Ping Li
  • Kang An
  • Xiaohui Jia
  • Yongting Cheng
  • Tianjun Jia
چکیده

Chlamydiae are Gram-negative obligate intracellular bacteria that cause diseases with significant medical and economic impacts. Like other chlamydial species, Chlamydia pneumoniae possesses a unique developmental cycle, the infectious elementary body gains access to the susceptible host cell, where it transforms into the replicative reticulate body. The cytoplasmic vacuole where Chlamydia pneumoniae replicates is called an inclusion, which is extensively modified by the insertion of chlamydial effectors known as inclusion membrane proteins (Incs). The C. pneumoniae-specific inclusion membrane protein (Inc) Cpn0147 contains domains that are predicted to be exposed to the host cytoplasm. To map host cell binding partners of Cpn0147, a yeast two-hybrid system was used to screen Cpn0147 against a HeLa cell cDNA library, which led to the finding that Cpn0147 interacted with the host cell protein cyclic adenosine monophosphate (cAMP)-responsive element (CRE)-binding protein (CREB3). The interaction was validated by co-immunoprecipitation of Cpn0147 with CREB3 from HeLa cells ectopically expressing both. Furthermore, Cpn0147 and CREB3 were co-localised in HeLa cells under confocal fluorescence microscopy. The above observations suggest that CREB3 may directly bind to the cytoplasmic domain of Cpn0147 to mediate the interactions of chlamydial inclusions with host cell endoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases.

Chlamydiae are intracellular bacteria that develop within a membrane-bound vacuole called an inclusion. To ensure that the inclusion is a safe niche for chlamydial replication, chlamydiae exploit a number of host cell processes, including membrane-trafficking pathways. Recently, several Rab GTPases were found to associate with the inclusions of various chlamydial species. Here we report that Cp...

متن کامل

The Chlamydia pneumoniae Inclusion Membrane Protein Cpn1027 Interacts with Host Cell Wnt Signaling Pathway Regulator Cytoplasmic Activation/Proliferation-Associated Protein 2 (Caprin2)

We previously identified hypothetical protein Cpn1027 as a novel inclusion membrane protein that is unique to Chlamydia pneumoniae. In the current study, using a yeast-two hybrid screen assay, we identified host cell cytoplasmic activation/proliferation-associated protein 2 (Caprin2) as an interacting partner of Cpn1027. The interaction was confirmed and mapped to the C-termini of both Cpn1027 ...

متن کامل

Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion.

Chlamydiae are obligate intracellular pathogens replicating only inside the eukaryotic host. Here, we studied the effect of human flotillin-1 protein on Chlamydia pneumoniae growth in human line (HL) and A549 epithelial cell lines. RNA interference was applied to disrupt flotillin-1-mediated endocytosis. Host-associated bacteria were detected by quantitative PCR, and C. pneumoniae growth was ev...

متن کامل

High Sensitivity C–Reactive Protein and Im-munoglobulin G against Chlamydia Pneumo-niae and Chlamydial Heat Shock Protein-60 in Ischemic Heart Disease

Background: Inflammation and infectious agents such as Chlamydia pneumoniae have been associated with cardiovascular disease. Objective: To evaluate the serum high sensitivity C - reactive protein (hs-CRP) and antibodies against Chlamydia pneumoniae and Chlamydial heat shock protein-60 (Cp-HSP60) in patients with ischemic heart disease (IHD). Methods: 62 patients with IHD having either acute my...

متن کامل

Acquisition of Rab11 and Rab11-Fip2—A novel strategy for Chlamydia pneumoniae early survival

The initial steps in chlamydial infection involve adhesion and internalization into host cells and, most importantly, modification of the nascent inclusion to establish the intracellular niche. Here, we show that Chlamydia pneumoniae enters host cells via EGFR-dependent endocytosis into an early endosome with a phosphatidylinositol 3-phosphate (PI3P) membrane identity. Immediately after entry, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017